Упрощение выражений

__________________________________________________________________________________________________

Содержание

__________________________________________________________________________________________________

Упрощение выражений

Сегодня мы поговорим о часто встречающейся в школьных учебниках задаче – упростить выражение. Сначала научимся отличать сложное выражение от простого. Иногда это явно видно. Например, рассмотрим тождество: .

В данном примере очевидно, что выражение в правой части проще, чем выражение в левой. Но иногда понять это сразу сложно. Упростить выражение – это значит уменьшить количество операций, которые необходимо сделать, чтобы вычислить его значение при конкретных значениях переменных. Например, возьмем формулы сокращенного умножения: . Для вычисления выражения в левой части нужно выполнить  операций: , а для вычисления значения выражения в правой части –  операции (вычитание и возведение в квадрат). То есть мы явно упростили выражение: вместо  операций нужно сделать . Кажется, что разница между  и  небольшая, но в зависимости от значений переменных вычисления могут значительно усложниться при подсчете вручную. Кроме того, если речь идет, например, о компьютерных вычислениях и нам нужно вычислить миллион раз значение выражения при различных значениях переменных , то разница будет в  выполненных операций.

__________________________________________________________________________________________________

Сложность и простота

Если мы понимаем закон или формулу, то для нас это просто. Рассмотрим ряд чисел: ,… Сложно ли предсказать в этом ряду следующее число? Некоторые могут сказать, что это невозможно, но на самом деле это числа Фибоначчи: такая последовательность задается формулой . Зная формулу, предсказать следующее число не составит труда, нужно просто сложить два предыдущих.

Так происходит всегда: когда мы узнаем закон, то, что казалось пугающим, становится понятным и упрощенным. Рассмотрим еще один пример. Есть такая задача: какой номер у парковочного места, в котором припаркован автомобиль? Дайте ответ в течение  секунд.

Кажется, что записан странный набор чисел: , …, . Но если понять, что на эти номера мы смотрим сверху вниз, то все становится просто. На самом деле это: . Тогда номер очевиден – .

Еще один пример, теория эволюции Ч. Дарвина:

До него Линней занимался классификацией:

Главным достижением биологии является упрощение. Есть царства, типы, классы и т.д. И каждый живой организм принадлежит какой-то ветке на этом дереве. Но классификация не внесла ясность, а вот когда возникла теория Дарвина, тогда стало понятно, почему такое многообразие есть и как оно возникает. Еще один пример из географии. Существует теория – карта. Без нее тяжело найти путь из одного места в другое, но с ней это становится просто.

Важно отметить, что когда мы говорим о порядке, то подразумеваем его субъективность. Если, например, человек не знает чисел, то таблички на домах для него не вносят никакого порядка, увидев знаки , он не сможет понять, где находится дом .

В математике то, что упрощает вычисления, – это таблица умножения и алгоритм умножения в столбик. А само умножение – это упрощение многократного сложения: . А степень – это упрощение многократного умножения: . Зачем мы привели столько примеров из разных областей? Чтобы показать, что любая теория – это и есть упрощение.

Если рассмотреть мозг как механизм для выживания, то мозг все время создает теории. Так как помнить все невозможно, нужно что-то забывать. Если мы будем помнить все, то в каждый момент нам будет сложно сфокусироваться на происходящем. Но, с другой стороны, нам нужно помнить то, что было, чтобы использовать предыдущий опыт. Получилась противоречивая задача: нужно и забывать, и помнить. Поэтому выход – создание теорий, то есть помнить только существенное. Для того чтобы понять, что такое, например, стол, достаточно показать несколько примеров. Если мы покажем два стола и скажем, что и то, и то – стол, то возникнет идея стола. Или когда ребенок показывает на лужу и говорит, что это вода, для него это возникновение идеи (теории) воды, он понял, что и в луже вода, и в стакане вода, и из-под крана течет тоже вода.

__________________________________________________________________________________________________

Сложность определения

Иногда сформулировать какое-то определение понятия сложнее, чем научиться определять, соответствует ли понятию объект. Если попробовать точно сформулировать ребенку, кто тетя, а кто дядя, это вызовет затруднение. При этом ребенок на основе жизненного опыта строит теорию, помогающую ему практически безошибочно отличать тетю от дяди.

В математике мы тоже часто сталкиваемся с объектами, которые мы не определяем. Например, множество (точка, линия и др.), у этого понятия нет определения, но мы все понимаем, что это. Если говорить про множества, то любое множество – это тоже теория. Например, синяя рубашка и синий автомобиль, что у них общего?

У них общее свойство, они синие. То есть не только при помощи свойства можно определить множество, но и наоборот. Например, Хлестаков и городничий из комедии Н.В. Гоголя «Ревизор». С одной стороны, совершенно разные люди: один – дородный, опытный, сильный мужчина, второй – хлюпенький мальчишка. При помощи вопроса «Что у них общего?» можно определить, что такое коррупция. На коррупцию же не укажешь пальцем, а на них можно, оба берут деньги, пользуясь своей властью, что и есть коррупция.

Два многочлена равны, так как мы имеем некую теорию и знаем, как их преобразовать: , так как . Когда речь идет о выражениях, то упрощение – это уменьшение количества действий. В общем, для каждого понятно, что значит упростить. Это значит убрать все, что можно, не изменив суть изначального объекта. Хорошим примером полезного упрощения в математике также является задача Эйлера о 7 мостах.

__________________________________________________________________________________________________

Задача Эйлера

Данная задача родилась в городе Калининграде (ранее – Кёнигсберг). Гуляя, жители придумали такую задачу: vожно ли обойти все мосты, при этом не проходя ни по одному мосту дважды (не повторяясь)?

Решая эту задачу, Эйлер предложил следующее: считать части города точками. Почему так можно сделать? Представим, что все части города мы начнем уменьшать, от этого задача не поменяется, ведь размеры частей города для решения задачи не важны. Значит, как бы мы ни уменьшали их, задача остается той же. То есть можно свести части города к точкам, а мосты – аналогично к линиям, соединяющим эти точки. Тогда получим следующий чертеж.

Подобные чертежи называют графами. У него  вершины и  ребер. Эйлер получил решение для данной задачи и обобщил его для произвольного графа. Один из пунктов, которые он получил состоит в следующем. Когда мы говорим, что можно обойти все, проходя ровно один раз, то задачу можно переформулировать так: граф можно нарисовать, не отрывая руки от бумаги, причём каждую линию – ровно один раз. Эйлер доказал, что если в графе есть больше двух нечетных вершин (вершин, из которых выходит нечетное количество линий), то такая задача неразрешима. В нашей задаче все  вершины нечётные, значит, ответ на вопрос задачи: обойти таким образом мосты нельзя.

Представим, что у нас есть грузовик и нам нужно развозить что-то по городам, которые соединены дорогами. Естественно, что в таком случае не хочется  раза заезжать в один и тот же город. Пользуясь доказанным фактом, мы сможем узнать, когда это невозможно. Теория графов имеет большое применение, например, в информатике (нейронные сети и др.).