- Логарифм, десятичный логарифм, натуральный логарифм

И.Кеплер (1624), Б.Кавальери (1632), А. Принсхейм (1893)

Термин "логарифм" принадлежит шотландскому математику Джону Неперу («Описание удивительной таблицы логарифмов», 1614); он возник из сочетания от греческих слов λογος (слово, отношение) и αριθμος (число). Логарифм у Дж. Непера – вспомогательное число для измерения отношения двух чисел. Современное определение логарифма впервые дано английским математиком Уильямом Гардинером (1742). По определению, логарифм числа b по основанию a ( 1, a > 0) – показатель степени m, в которую следует возвести число a (называемое основанием логарифма), чтобы получить b. Обозначается logab. Итак, m = logabесли a= b.

Первые таблицы десятичных логарифмов опубликовал в 1617 году оксфордский профессор математики Генри Бригс. Поэтому за рубежом десятичные логарифмы часто называют бригсовыми. Термин "натуральный логарифм" ввели Пьетро Менголи (1659) и Николас Меркатор (1668), хотя лондонский учитель математики Джон Спайделл ещё в 1619 году составил таблицу натуральных логарифмов.

До конца XIX века общепринятого обозначения логарифма не было, основание a указывалось то левее и выше символа log, то над ним. В конечном счёте математики пришли к выводу, что наиболее удобное место для основания – ниже строки, после символа log. Знак логарифма  – результат сокращения слова "логарифм" – встречается в различных видах почти одновременно с появлением первых таблиц логарифмов, например Log – у И. Кеплера (1624) и Г. Бригса (1631), log – у Б. Кавальери (1632). Обозначение ln для натурального логарифма ввёл немецкий математик Альфред Прингсхейм (1893).

_________________________________________________________________________________________________________

- Синус, косинус, тангенс, котангенс

У.Оутред (сер. XVII века), И.Бернулли (XVIII в.), Л.Эйлер (1748, 1753)

Сокращённые обозначения для синуса и косинуса ввёл Уильям Оутред в середине XVII века. Сокращённые обозначения тангенса и котангенса: tg, ctg введены Иоганном Бернулли в XVIII веке, они получили распространение в Германии и России. В других странах употребляются названия этих функций tan, cot предложенные Альбером Жираром ещё ранее, в начале XVII века. В современную форму теорию тригонометрических функций привёл Леонард Эйлер (1748, 1753), ему же мы обязаны и закреплением настоящей символики. Термин "тригонометрические функции" введён немецким математиком и физиком Георгом Симоном Клюгелем в 1770 году.

Линия синуса у индийских математиков первоначально называлась «арха-джива» («полутетива», то есть половина хорды), затем слово «арха» было отброшено и линию синуса стали называть просто «джива». Арабские переводчики не перевели слово «джива» арабским словом «ватар», обозначающим тетиву и хорду, а транскрибировали арабскими буквами и стали называть линию синуса «джиба». Так как в арабском языке краткие гласные не обозначаются, а долгое «и» в слове «джиба» обозначается так же, как полугласная «й», арабы стали произносить название линии синуса «джайб», что буквально обозначает «впадина», «пазуха». При переводе арабских сочинений на латынь европейские переводчики перевели слово «джайб» латинским словом sinus, имеющим то же значение. Термин «тангенс» (от лат. tangens – касающийся) был введен датским математиком Томасом Финке в его книге «Геометрия круглого» (1583).

_________________________________________________________________________________________________________

- Арксинус

К.Шерфер (1772), Ж.Лагранж (1772)

Обратные тригонометрические функции – математические функции, которые являются обратными к тригонометрическим функциям. Название обратной тригонометрической функции образуется от названия соответствующей ей тригонометрической функции добавлением приставки "арк" (от лат. arc – дуга). К обратным тригонометрическим функциям обычно относят шесть функций: арксинус (arcsin), арккосинус (arccos), арктангенс (arctg), арккотангенс (arcctg), арксеканс (arcsec) и арккосеканс (arccosec). Впервые специальные символы для обратных тригонометрических функций использовал Даниил Бернулли (1729, 1736). Манера обозначать обратные тригонометрических функции с помощью приставки arc (от лат. arcus, дуга) появилась у австрийского математика Карла Шерфера и закрепилась благодаря французскому математику, астроному и механику Жозефу Луи Лагранжу. Имелось в виду, что, например, обычный синус позволяет по дуге окружности найти стягивающую её хорду, а обратная функция решает противоположную задачу. Английская и немецкая математические школы до конца XIX века предлагали иные обозначения: sin–1 и 1/sin, но они не получили широкого распространения.

_________________________________________________________________________________________________________

  - Гиперболический синус, гиперболический косинус

В.Риккати (1757)

Первое появление гиперболических функций историки обнаружили в трудах английского математика Абрахама де Муавра (1707, 1722). Современное определение и обстоятельное их исследование выполнил итальянец Винченцо Риккати в 1757 году в работе «Opusculorum», он же предложил их обозначения: sh, ch. Риккати исходил из рассмотрения единичной гиперболы. Независимое открытие и дальнейшее исследование свойств гиперболических функций было проведено немецким математиком, физиком и философом Иоганном Ламбертом (1768), который установил широкий параллелизм формул обычной и гиперболической тригонометрии. Н.И. Лобачевский впоследствии использовал этот параллелизм, пытаясь доказать непротиворечивость неевклидовой геометрии, в которой обычная тригонометрия заменяется на гиперболическую.

Подобно тому, как тригонометрические синус и косинус являются координатами точки на координатной окружности, гиперболические синус и косинус являются координатами точки на гиперболе. Гиперболические функции выражаются через экспоненту и тесно связанных с тригонометрическими функциями: sh(x)=0,5(ex–e–x)ch(x)=0,5(ex+e–x). По аналогии с тригонометрическими функциями определены гиперболические тангенс и котангенс как отношения гиперболических синуса и косинуса, косинуса и синуса, соответственно.

_________________________________________________________________________________________________________

Дифференциал

 Г.Лейбниц (1675, в печати 1684)

Главная, линейная часть приращения функции. Если функция y=f(x) одного переменного x имеет при x=xпроизводную, и приращение Δy=f(x0+?x)–f(x0функции f(x) можно представить в виде Δy=f'(x0)Δx+R(Δx), где член R бесконечно мал по сравнению с Δx. Первый член dy=f'(x0)Δx в этом разложении и называется дифференциалом функции f(x) в точке x0. В работах Готфрида Лейбница, Якоба и Иоганна Бернулли слово "differentia" употреблялось в смысле "приращение", его И. Бернулли обозначал через Δ. Г. Лейбниц (1675, в печати 1684) для "бесконечно малой разности" использовал обозначение d – первую букву слова "differential", образованного им же от "differentia".

_________________________________________________________________________________________________________

- Неопределённый интеграл 

Г.Лейбниц (1675, в печати 1686)

Слово "интеграл" впервые в печати употребил Якоб Бернулли (1690). Возможно, термин образован от латинского integer – целый. По другому предположению, основой послужило латинское слово integro – приводить в прежнее состояние, восстанавливать. Знак ∫ используется для обозначения интеграла в математике и представляет собой стилизованное изображение первой буквы латинского слова summa – сумма. Впервые он был использован немецким математиком основателем дифференциального и интегрального исчислений Готфридом Лейбницем в конце XVII века. Другой из основателей дифференциального и интегрального исчислений Исаак Ньютон в своих работах не предложил альтернативной символики интеграла, хотя пробовал различные варианты: вертикальную черту над функцией или символ квадрата, который стоит перед функцией или окаймляет её. Неопределённый интеграл для функции  y=f(x) — это совокупность всех первообразных данной функции.

_________________________________________________________________________________________________________

- Определённый интеграл

Ж.Фурье (1819–1822)

Определённый интеграл функции f(x) с нижним пределом a и верхним пределом b можно определить как разность F(b) – F(a) = af(x)dx, где F(х) – некоторая первообразная функции f(x). Определённый интеграл af(x)dx численно равен площади фигуры, ограниченной осью абсцисс, прямыми x=a и x=b и графиком функции f(x). Оформление определённого интеграла в привычном нам виде предложил французский математик и физик Жан Батист Жозеф Фурье в начале XIX века.

_________________________________________________________________________________________________________

- Производная

Г.Лейбниц (1675), Ж.Лагранж (1770, 1779)

Производная – основное понятие дифференциального исчисления, характеризующее скорость изменения функции f(x) при изменении аргумента x. Определяется как предел отношения приращения функции к приращению её аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную в некоторой точке, называют дифференцируемой в данной точке. Процесс вычисления производной называется дифференцированием. Обратный процесс – интегрирование. В классическом дифференциальном исчислении производная чаще всего определяется через понятия теории пределов, однако исторически теория пределов появилась позже дифференциального исчисления.

Термин "производная" ввёл Жозеф Луи Лагранж в 1797 году, обозначения производной с помощью штриха – он же (1770, 1779), а dy/dx – Готфрид Лейбниц в 1675 году. Манера обозначать производную по времени точкой над буквой идёт от Ньютона (1691). Русский термин «производная функции» впервые употребил русский математик Василий Иванович Висковатов (1779–1812).

_________________________________________________________________________________________________________

; - Частная производная

А. Лежандр (1786), Ж.Лагранж (1797, 1801)

Для функций многих переменных определяются частные производные – производные по одному из аргументов, вычисленные в предположении, что остальные аргументы постоянны. Обозначения ∂f/x, z/y ввёл французский математик Адриен Мари Лежандр в 1786 году; fx', zx– Жозеф Луи Лагранж (1797, 1801); 2z/x2, 2z/xy – частные производные второго порядка – немецкий математик Карл Густав Якоб Якоби (1837).

_________________________________________________________________________________________________________

- Разность, приращение

И.Бернулли (кон. XVII в. – перв. пол. XVIII в.), Л.Эйлер (1755)

Обозначение приращения буквой Δ впервые употребил швейцарский математик Иоганн Бернулли. В общую практику использования символ "дельта" вошёл после работ Леонарда Эйлера в 1755 году.

_________________________________________________________________________________________________________

- Сумма

Л.Эйлер (1755)

Сумма – результат сложения величин (чисел, функций, векторов, матриц и т. д.). Для обозначения суммы n чисел a1, a2, ..., an применяется греческая буква "сигма" Σ: a1 + a2 + ... + an = Σni=1 a= Σnai.  Знак Σ для суммы ввёл Леонард Эйлер в 1755 году.

_________________________________________________________________________________________________________

- Произведение

К.Гаусс (1812)

Произведение – результат умножения. Для обозначения произведения n чисел a1, a2, ..., an применяется греческая буква "пи" Π: a1 · a2 · ... · an = Πni=1a= Πn1ai. Например, 1 · 3 · 5 · ... · 97 · 99 = ?501(2i–1). Знак Π для произведения ввёл немецкий математик Карл Гаусс в 1812 году. В русской математической литературе термин "произведение" впервые встречается у Леонтия Филипповича Магницкого в 1703 году.

_________________________________________________________________________________________________________

- Факториал

К.Крамп (1808)

Факториал числа n (обозначается n!, произносится "эн факториал") – произведение всех натуральных чисел до n включительно: n! = 1·2·3·...·n. Например, 5! = 1·2·3·4·5 = 120. По определению полагают 0! = 1. Факториал определён только для целых неотрицательных чисел. Факториал числа n равен числу перестановок из n элементов. Термин "факториал" ввёл французский математик и политический деятель Луи Франсуа Антуан Арбогаст (1800), обозначение n! – французский математик Кристиан Крамп (1808).

_________________________________________________________________________________________________________

- Модуль, абсолютная величина

К.Вейерштрасс (1841)

Модуль, абсолютная величина действительного числа х – неотрицательное число, определяемое следующим образом: |х| = х при х ≥ 0, и |х| = –х при х ≤ 0. Например, |7| = 7, |– 0,23| = –(–0,23) = 0,23. Модуль комплексного числа z = a + ib – действительное число, равное √(a2 + b2).

Считают, что термин "модуль" предложил использовать английский математик и философ, ученик Ньютона, Роджер Котс. Готфрид Лейбниц тоже использовал эту функцию, которую называл "модулем" и обозначал: mol x. Общепринятое обозначение абсолютной величины введено в 1841 году немецким математиком Карлом Вейерштрассом. Для комплексных чисел это понятие ввели французские математики Огюстен Коши и Жан Робер Арган в начале XIX века. В 1903 году австрийский учёный Конрад Лоренц использовал эту же символику для длины вектора.

_________________________________________________________________________________________________________

- Норма

Э.Шмидт (1908)

Норма – функционал, заданный на векторном пространстве и обобщающий понятие длины вектора или модуля числа. Знак "нормы" (от латинского слово "norma" – "правило", "образец") ввел немецкий математик Эрхард Шмидт в 1908 году.