Числовые функции

__________________________________________________________________________________________________

Содержание

__________________________________________________________________________________________________

Числовые функции

Числовая функция – это функция, у которой область определения (аргументы) и область значений функции являются числовыми множествами.   , где  – числовые множества.

Примером числовой функции может служить зависимость вашего роста (значения функции) от времени (аргумент).

Функция, которая ставит в соответствие каждому человеку его размер обуви, не является числовой, так как ее аргументы – не числа.

Как и любые другие объекты, функции принято классифицировать, чтобы было удобнее их изучать. Вы знакомы с разными видами функций: линейной, квадратичной, логарифмической и т.д. Рассмотрим самые простые функции – линейные.

__________________________________________________________________________________________________

Линейная функция

Уравнение линейной функции:  и  – некоторые числа. График – прямая.

Почему линейную функцию можно назвать простой? Так как ее графиком является прямая. Любая невертикальная прямая на координатной плоскости задает линейную функцию и наоборот. В геометрии прямая – один из самых простых объектов.

Кроме того, линейную функцию мы часто встречаем и используем в жизни. Например, когда мы говорим, что автомобиль движется со скоростью  км/ч. Это означает, что за первый час он проедет  км, за второй –  км и т.д. То есть одинаковые изменения аргумента (времени) приводят к одинаковому изменению функции (расстоянию, которое проехал автомобиль).

Опишем движение автомобиля: пусть начальное положение – , а за  часов с постоянной скоростью он проедет расстояние . Тогда положение автомобиля в данный момент времени будет определяться следующим образом: , где  – аргумент функции.

Такое уравнение и описывает линейную функцию. Возьмем два момента времени  и :

Мы видим, что изменение значения функции пропорционально изменению значения её аргумента.

Также линейная функция важна и тем, что с помощью неё можно локально приблизить (описать) другие функции. Например, если мы на графике возьмем маленький участок, то увидим, что он близок к прямой.

Проделав так для всей функции, мы получили кусочно-линейную функцию. Теперь мы можем описать ее поведение на каждом линейном участке.

Простой пример приближения кривой линии короткими отрезками прямых изучается в школе на информатике: черепашка в программе ЛОГО таким образом рисует окружность. Понятно, что идеальную окружность на экране нарисовать нельзя: у экрана есть минимальная ячейка (пиксель). Мы ее называем точкой, но у нее все равно есть какая-то ширина, длина. И понятно, что нарисовать гладкую окружность нельзя – на самом деле будет получаться очень-очень точное, но всё-таки приближение. 

Если мы смотрим на фотографию на экране, то кажется, что линии плавные. Но если начать её увеличивать, то рано или поздно становятся видны квадратики (пиксели).

 

То же самое можно увидеть и в нарисованной черепашкой окружности. При увеличении станет заметно, что на самом деле нарисована не окружность, а правильный n-угольник с достаточно большим значением  .

В жизни мы часто используем такой метод. Например, наблюдая за полетом птицы, мы неосознанно высчитываем ее скорость и предполагаем, что она будет лететь дальше по прямой с той же скоростью. На самом деле наше предсказание может отличаться от действительности, но на небольшом промежутке времени оно будет достаточно точным.

Не только мы выполняем такой анализ. Многие животные тоже умеют решать такие задачи: например, лягушка, когда ловит комара, должна уметь предсказывать точку, в которой он будет, чтобы успеть выбросить язык.

__________________________________________________________________________________________________

Квадратичная функция

Для более точных измерений мы используем более точные инструменты. Для функций более точным (по сравнению с линейной функцией) инструментом является квадратичная функция. Можно сказать, что это следующая по сложности функция.

Уравнение квадратичной функции: , где  и  – некоторые числа.

График квадратичной функции – парабола.

Используя квадратичную функцию, можно более точно приближать неизвестные нам функции, а значит, делать более точные предсказания.

Ещё одна часто возникающая задача, связанная с числовыми функциями: нам известны значения функции в определенных точках, а нужно понять, как ведёт себя функция между этими точками. Например, у нас есть какие-то данные эксперимента.

Чтобы понять, как вела себя температура воздуха между отмеченными точками, нужно каким-то образом предположить, как ведёт себя функция, так как мы не можем делать бесконечно много измерений. Приблизить можно линейно или квадратично.

Такие процессы называются интерполяцией.

Задача кажется сложной: может показаться, что это гадание на кофейной гуще. Действительно, мы же не знаем, как поведёт себя функция между двумя отмеченными точками. Например, её график может выглядеть следующим образом.

 

На самом деле мы восстанавливаем график функции по точкам, используя некоторую модель: предполагаем, что функция достаточно гладкая, если в модели (например, при проведении эксперимента) не было резких скачков. Тогда с большой степенью вероятности можно сказать, что график функции выглядит так, как показано на рисунке.

Квадратичную, линейную функции объединяет то, что они задаются многочленом (есть и другие такие функции):

Кроме таких функций, есть и другие, они описывают разные процессы физики, биологии и также являются изучаемыми. Их можно задать, описать их свойства, построить их графики и дальше с ними работать. К таким функциям относятся, например, показательная, логарифмическая, тригонометрические функции.